The CIO and lead architects are discussing next year’s budget. They discuss the impact of quality.

- They need to prepare to defend their budget to the CFO.
- They have to balance their limited budget between investments in quality or functionality.
- They want to systematically reason about when investing in quality is the better choice:
 - Demand for features may at first seem more urgent.
They come to some agreement on tackling the problem:

- Quality matters because it affects the bottom line of the business
 - Impacts of poor quality can be very expensive

- On a approach: Measure the business value of the software with or without quality improvements
The product Value (NPV) consists of business case elements

For a product, P:

\[NPV(P) = NPV(\text{Benefits}) - NPV(\text{Dev Costs}) - NPV(\text{After Delivery Costs}) \]

- **Benefits**: How you measure success: revenue, cost avoidance, new customers, labor savings, mission

- **Development costs**: coding, deployment, distribution, ...

- **After market costs**:
 - Service, warrantee
 - Technical debt: cost of addressing code shortfalls
 - Technical liability: cost of addressing bad business outcomes

Can be most impactful
Assuming technical liability is like self-insuring your software.

Imagine some agent offered you the following insurance deal:

- “We will indemnify your organization against the following future costs resulting from shipping your software:
 - Data breaches
 - Data losses
 - Excess support costs (above some deductible)
 - Down time losses
 - Maybe others.”

- “However, it will cost you $X”

What would you think?
The question arises, “What is the fair price of the policy?”

In particular:

- How to calculate the liability?
- What should I do to the code to lower the liability?
Computing technical liability

- Context dependent – More liability assumed for next release of an avionics dashboard than the next release of angry birds

- Uncertain – as The liability involves the likelihood of future events:
 - X has to be approached probabilistically, in particular it requires predictive analytics
 - The liability is best described by a probability distribution

- X is monetary – it is measured in currency

A fair value of X might be the mean of this distribution
For software, costs and benefits come in the future.

Hard fact of life: **Software is not worth what you have spent on it**

\[NPV = \sum_{i=0}^{n} \frac{FV_i}{(1 + r)^i} \]

- \(NPV \) = Net present value
- \(FV_i \) = Future Value at period \(i \)
- \(r \) = discount rate

NPV is how finance evaluates worth now of monies earned or spent in the future. For example how does one today value a flow of future revenues given an inflation rate.
Unlike investing in a bond, the future costs and benefits are uncertain

For software, IT projects

- The future values in NPV equation are uncertain – they must be described probabilistically, as a distribution

- Hence the NPV, RoI are also distributions
The inputs capture beliefs about the future values

- Capture expert opinion of range of values
 - Best case - Zero probability of FV less than ($100K),
 - Worse case - Zero probability of FV greater than worse case ($170K),
 - Most likely case - Most probable case ($120K)

- Like planning poker

- Capture as triangular distributions for prediction tools
The output captures the probabilities of the NPV

- For example, for a product the NPV might be a common bell-shaped distribution with expected value of $100K and standard deviation of $30.

- Based on the input, there is a
 - 10% chance the NPV will be less than $61K
 - 10% chance it could be more than $138K

- Whether to invest depends on your risk appetite.

Calculated with Monte Carlo simulation.
For portfolio management

To get a portfolio view, plot value, risk of projects.
A Portfolio View
A Portfolio View

Portfolio

Low Risk, High Reward
Low Risk, Low Reward
High Risk, High Reward
High Risk, Low Reward
Quality affects NPV

For a product, P:
\[\text{NPV}(P) = \text{NPV(Benefits)} - \text{NPV(Dev Costs)} - \text{NPV(After Delivery Costs)} \]

Investing in quality *may* affect

- **Benefits**
 - Higher because of better acceptance, utility
 - Lower because of delayed market release or deployment

- **Dev Costs**
 - Probably higher, drives need for efficiency

- **After delivery costs**
 - Likely lower

Don’t know the RoI without a model
The quality investment decision

At some point, you get diminishing returns on quality, the money may be spent elsewhere.

In fact, RoI can turn negative. When it does, you know it is time to ship.

Also lowering the costs of enhancing quality enables shipping more higher quality with positive ROI.

$$RoI = \frac{NPV(P_1) - NPV(P_0)}{cost(P_1) - cost(P_0)}$$

$P_1 =$ product with enhanced quality

$P_0 =$ product with initial quality
It is time

- Economic pressures are growing

- Techniques and tools are readily available
 - Bayesian Net
 - Monte Carlo
 - Open Source R packages

- Knowledge is
 - Online courses
Why Bother?

- No longer flying blind: “To measure is to know.”

- With these techniques, software and IT become
 - a more mature business function
 - a value center (not just a cost center)

- Enable well-informed, information-driven conversations
 - With stakeholders, e.g. CFO
 - With staff (avoid the loudest wins value conversation)
 - Have better informed budget discussions

- Promotes integration of concerns among subject matter experts
To start

- These models involve skills not common, but should be, in our community – start building the capabilities:
 - Business case
 - Analytics
 - Technical debt
 - Liabilities experts

- Start with simple models
 - They just have to be good enough to support decision.
 - Add detail only if need, avoid complexity

Perfect is the enemy of the good
To build the models:

- Start with, or create the business case!
 - 3 NPV terms: Benefits, dev costs, after delivery costs.
 - Usually involves different SME’s stakeholders
 - Benefits: Marketing, business analysts, …
 - Dev Costs: Developments
 - After market: support, liabilities experts, technical debts owners
 - Each NPV will have own own model
 - E.g. revenue (benefit) may depend on estimate of price, market size, and penetration

- Elicit uncertainties
 - Best case, worse case, expected case for inputs to the models

- Build integrated model in appropriate tools
“The only way to predict the future is to have power to shape the future.”

~ Eric Hoffer

Thank You